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Nonequilibrium transitions induced by the cross-correlation of white noises
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We study the role that the cross-correlation of noises plays in the statistical behavior of systems driven by
two multiplicative Gaussian white noises. The temporal evolution of the system is described by a Langevin
equation, for which we adopt a general interpretation that includes the Ito as well as the Stratonovich inter-
pretation. We derive the stochastically equivalent Fokker-Planck equation by means of the two-stage averaging
of a state-dependent function. Analyzing the stationary solution of the Fokker-Planck equation for specific
examples, we show explicitly that the cross-correlation of white noises can induce nonequilibrium transitions.
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[. INTRODUCTION cussed the choica=1, the so-called kinetic form of the
Langevin and Fokker-Planck equations. Equatibri) with
A large variety of phenomena in physics, chemistry, biol-an appropriately chosen value far represents a valuable
ogy, and other fields involve the interaction of a nonlineartool for modeling a great variety of phenomena and pro-
system with a fluctuating environment. The latter is oftencesses, including stochastic resonari@gé noise-induced
modeled as a source of external noise with known statisticaransitiong 1], resonant activatiof8], and directed transport
characteristics. Most commonly, the external noise is consid9], to name a few.
ered to be Gaussian and white, since this provides a satisfac- As was recently realized, some applications require that
tory idealization of real noise with a small correlation time the fluctuating environment of the system be modeled by
for a very large number of applicatioh]. White noise also two, or more, cross-correlated Gaussian white noises. Usu-
has the advantage that the evolution of the system is Mamlly, a multiplicative and an additive noise are considered.
kovian [2], which simplifies considerably the analytical Studies of the single-mode lagdi0], of noise-induced trans-
study of the statistical behavior of the system. In the whiteport of Brownian particle$11] and quantum particlesl2],
noise approximation, spatially homogeneous systems with af the mean first passage time over a fluctuating potential
single-state variablg(t) are often described by the Langevin barrier [13], of the activation ratd14], of stochastic reso-
equation nance[15], and of stochastic systems with colored correla-
tion between white noise and colored nojd4&] show that
X(1)=FXx(t))+GXx(t)I'(t), (1.)  the cross-correlation between those noises plays a significant
role. In order to describe the fluctuation effects in systems
where F(x) and G(x) are deterministic functions that can that are subjected to the action of two white noises, we
depend explicitly ort as well, andl'(t) is Gaussian white Ppresent a model whose dimensionless st4tg evolves ac-
noise. We are interested in the case of multiplicative noise¢ording to the Langevin equation
i.e., G(x) is not constant and the effect of the noise depends )
on the state of the system. As is well known, in the case of o
multiplicative white noise, the Langevin equati¢h.1) as x(t)—f(x(t))+i21 9i(x(D) 7 (). 12
written is meaningless until an appropriate interpretation for
the integral of the noise term has been adopfeeB]. To do  To capture the broadest variety of applications, we assume
so, we must specify the parameter(O=<\<1) that deter- that each Gaussian white noisg(t) is characterized by its
mines the points of time at whidB(x(t)) is evaluated inthe own parametei; (0<\;<1). The noises have zero mean,
corresponding integral sum. Only then can the Langevirand their correlation functions are defined as follows:
equation be properly integrated to obtain sample paths for
the stochastic evolution of the system, and a stochastically (7i(D)y;(t"))y=24;6(t—t"). (1.3
equivalent Fokker-Planck equation can be associated with
Eq. (1.1). Most commonly, the values=0 andA=1/2, cor-  Here(-) denotes averaging with respect to the noiggs),
responding to the Itd4] and Stratonovich5] interpretation A3;=A;(=0) andA,,=A,(=0) are the intensities of the
of Eq. (1.1), respectively, are chosen. However, other choicesioisesy; (t) and y,(t), respectivelyA ;= Ay =r A A5, 1
are possible, and Klimontovicf6], for example, has dis- is the coefficient of correlation between(t) andy,(t), and
o(t) is the Diracé function.
In Ref.[17], the authors study different nonlinear systems
*Electronic address: denisov@ssu.sumy.ua with two noises and show that the additive noise, correlated
"Electronic address: whorsthe@mail.smu.edu or uncorrelated with the multiplicative noise, can induce
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nonequilibrium transitions. In this paper, we use Eq2) to 2

study the possibility of nonequilibrium transitions induced 5x:f(x(t))r+z g;(x(t)) W,

by the cross-correlation of white noises. More precisely, we =1

are interested in the situation when each noise separately 2 2

does not induce transitions, but together they do, due to their +2 2 Nigl (X()) g (X(1)SW;6W;, (2.3
cross-correlation. According to Refl], a noise-induced i=1j=1

transition occurs at=r,, if the number of local maxima of o i ,

the stationary probability distribution functidf(x) of x(t) ~ Which is accurate to first order in (Here and below, the
is different forr=r_,—0 and forr=r+0. To calculate Prime der_10tes the derlvgtlve with respect to thg argur_nent of
P..(x), we need to obtain the Fokker-Planck equation for the¢€ function) Next, we introduce a doubly differentiable
time-dependent probability distribution function xft). In  function u(x) and calculate the differencéu=u(x(t+ 7))
the particular case in which E1.2) is interpreted as a Stra- _ U(X()). Substituting EQ-(2-32) into the approximate for-
tonovich equation, the corresponding Fokker-Planck equaula du=axu’(x(t))+ 1/2(6x)“u"(x(t)), we find with the
tion was found earlief18—20, however by methods that S&me accuracy as EQ.3

cannot be directly extended to the general case of arbitrary 2

\;. To solve this problem, we develop another approach 5u:ur(x(t))f(x(t))TJru/(x(t))z i (X(1)) W,

based on the two-stage averaging of a state-dependent func- i=1

tion. Within this framework, we derive the Fokker-Planck
equation for arbitrary\; and show that Eq(1.2) can be re-
duced to a stochastically equivalent Langevin equation of
form (1.1). We calculateP¢(x) and study in detail the ex-

2 2
+u’(x<t>)§1 ,21 Nigi (X(1)g;(x(1)) SW; 8W,

. . . 2 2
tremal properties oP4(t) for systems with a linear or cubic Y
restoring forcef(x) and additive noisey,(t). Finally, we t5u (X(t))izl j§=:1 gi(x(1))g; (x(1)) SW; 6W; .
show explicitly that such systems can exhibit nonequilibrium
transitions induced by the cross-correlation of the noises. (2.9

The paper is organized as follows. In Sec. Il, we derive
the Fokker-Planck equation which corresponds to B®),
and find an equation of formil.1) that is equivalent to Eq.

The next step consists in averaging E4). The result is
written as{Su)=(-), where the dot denotes the right-hand

(1.2. In Sec. lll, we obtain the stationary distribution of the side of Eq.(2.4). Let P(x,t) be the probability density that

solution of Eq.(1.2), and consider three specific examples of¥(t)=x. Then

Eq. (1.2 that show that the cross-correlation of noises can .

induce nonequilibrium transitions. We summarize our results (u(X(t))>=(u(x))P(x ‘)EJ dxu(x)P(x,t), (2.5
in Sec. IV. ' —

and therefore

Il. THE FOKKER-PLANCK EQUATION
- J
To obtain the Fokker-Planck equation, we consider Eq. (5U>=Tf dx u(x) = P(x,1), (2.9
(1.2) to be the result of the mean-square limit-0 of the o

implicit difference scheme as 7—0. Further, sincé-) can be represented in the form of

a two-stage averaging, i.e(;)=(-)px, EQs. (2.2 and
2 (2.4) yield
X=T(O)T+ 2, GilX(1) oW, 29

<'>:T< u’(x)f(x)+2u’(x)21 2’1 NiAijg (x)g;j(x)
Here sx=x(t+7)—x(t), ti=t+\,7, and SW,=Wi(t+ 1) :

—W,;(t) are the increments of Wiener proces¥ést) satis- 2 2
fying the conditions U0 2, 2 Aygi(x)g(x) : (2.7
=1j=1 P(x,t)
M: 0, SW;6W,;=2A. (2.2 Using the integral representation for mean values, integrating

by parts, and assuming as usual natural boundary conditions,

) ) . i.e., the flow of probability vanishes at infinity, we find
The overbar denotes averaging with respect to the incre-

ments of Wiener processes. Note that the allowed values of w P
are restricted by the inequality|r|<1, because <'>=Tf dxu(x)[ — —[f(X)+h(x)]P(x,t)
(OW, = 0W,)2=27(A,+ A, =+ 2r JALA,)=0. — ox
Since W, « 72 and the equality(t;)=x(t)+\;dx is ac- 2
curate to first order in6x, we obtain from Eq.(2.1) the + _d(x)p(xyt)}, (2.9
formula ax?
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where

2 2
h(x>=2i§1 le NiA gl (X)g(X), (2.9

2 2
d0=2, 2, 4;8i(09;(0. (2.10

Finally, comparing the right-hand sides of E¢®.6) and
(2.8) and taking into account that(x) is an arbitrary func-
tion, we obtain the Fokker-Planck equation

2
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F(x)=f(x)+h(x)—Ad’(X). (2.19

Note that for systems with one noise the relatid(x)
=AD’(x) always holds, i.e.H(x)«D’(x). For systems
with two noises it is replaced by the more general relation

2

2\

&d(x)
agi(x)

h(x)= 2, N\igi (x) (2.16

Therefore h(x)ecd’ (x) holds only for specific cases; for ex-
ample, ifg.(x)=const, ifA{=N\,, orif g;(xX)=0,(X).

Ill. ANALYSIS OF THE STATIONARY DISTRIBUTION

J J J
EP(X’U:_ﬂ[f(xHh(x)]P(x’tHﬁd(x)P(x’t)’ The stationary solution of the Fokker-Planck equation
(2.10) (2.1 is given by
which is stochastically equivalent to E¢L.2). Using our b d f(y)+h(y) 3.1
approach to calculate the conditional average st(X)= Zd( € Y"ay |’ (3.9
(u(x(t))>|x(to):Xo (to=<t), we confirm that the conditional
probability densityP(x,t|xq,to) satisfies the same Fokker- if the normalizing factor
Planck equatior(2.11). We emphasize that this equation is
also valid in the general case when the functiéfs) and B 1 x f(y)+h(y)
gi(x) depend explicitly ort. Z= f dxd( ) &% ydy d(y) (3.2

Our results show that Eq1.2) defines a Markovian dif-
fusion process with a drift coefficient equal f¢x)+h(x)
and a diffusion coefficient equal tad2x). The eigenvalues

A+A,
2

1
iz\/(Al—Az)2+4r2A1A2

(2.12

K12=

of the matrix[ A;; ] are non-negative, which implies that Eq.
(2.10 is a non-negative definite quadratic form, i.d(x)
=0. The completely degenerate calix)=0 occurs if(1)
91(X)=92(x)=0; (2) A;=A,=0; (3) A;=0, A,>0, and
g,(x)=0 [or A,=0, A;>0, andgy(x)=0]; (4 r=—-1,
A;=A,>0, andg,(x)=gs(x) [orr=1, A;=A,>0, and
01(X)=—g,(x)]. Conditions (1)—(3) represent the trivial

[x(t) € (a,B),a<y=< ] exists. Assuming thad(x) >0, we
write the equatiorP;(x) =0, which defines the location of
the extrema oP(x), in the form
f(x)+h(x)—d’(x)=0. (3.3

As mentioned in the Introduction, we seek transitions that
are induced by the cross-correlation of the noises. This
means that for =0, Eq.(3.3) has the same number of roots
as equationf(x)=0, and forr=r, that number changes.
Next we demonstrate explicitly that such transitions indeed
occur even in relatively simple systems wigh(x)=1, i.e.,
when the noisey,(t) is additive.

case in which noises do not affect the system, and condition

(4) means that the noises exactly cancel each other, i.e.,

([71() = y,(1)1®) =0 if r=1. In all other casesl(x)#0.
The Fokker-Planck equation associated with 8ql), in
which the noisd’(t) is characterized by the correlation func-
tion (T (t)T'(t'))=2A68(t—t’) [here(-) denotes averaging
with respect to the noisg(t)] and by the parametex, has

the form[21]

J 4 52
EP(x,t)— — 5[F(x)+H(x)]P(x,t)+ yD(X)P(X,t),

(2.13
where H(x)=2AAG'(x)G(x) and D(x)=2AG?(x) are

A. First example

As a first example, we consider a system with a linear
restoring forcef(x)= —ax (a>0) and

X2
> (b>0).

91(x) (3.9

For this systemy=—o and g=o. According to Eqs(2.9
and(2.10, h(x)=\.d’(x),

the noise-induced drift and the diffusion coefficient, respec-

tively. Comparing Eq(2.11) with Eq. (2.13, we conclude
that Eq.(1.1) is stochastically equivalent to E41.2) (we
assume the same initial condition for both equatjpifs

G(x)=d(x)/A, (2.14

X2 2 X2
d(x)=A,b? +2 +1?%], (3.5
1+ x? +x2
and so Eq(3.3) is reduced to
X[Z22+ n(1+rv)z— n]=0, (3.6

wherez=1+x2 and
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4(1—Np)Ab? 1 /A Py(x) ' ' '
7]:%, v=r A_2 (3.7)
1 0.20
If r=0, thenz®+ »z— »=1, and Eq.3.6), just as equa- 0.15
tion f(x)=0, has the unique real root=0, which corre-
sponds to the maximum d&¥¢(x). This means that uncorre- 0.10
lated noises do not change the unimodal charact®gk),
i.e., noise-induced transitions do not occur. They can occur if 0.05
the cubic equation
0.00
22+ p(l+rv)z— =0 (3.9 -5.0

FIG. 1. Plot of P(x) vs x for Eq. (3.11); r=0 and =2, v=2,

has real roots which satisfy the conditian>1. Simple Ay=05 (fo= —0.25).

analysis shows that among the three ragtén=1,3) of Eq.
(3.8) only one root, says, satisfies that condition. Indeed, as B. Second example

is well known for example, Ref22]), if th rameter . . .
s well known(see, for e ple, Ref22]), € parame As another example consider a system with a cubic restor-

7 P(l+rv)? ing forcef(x)=—2ax® (a>0, the factor 2 is introduced for

Q= T + — (3.9 conveniencgand

4
is positive, then Eq(3.8) has two complex-conjugate roots

. o ; 91(x)=b—— (b>0). (3.12

z, andz,, and one real roots. It is not difficult to verify 1+x
thatzz>1, only if 1+r »v<<0. Further, aQ=0 all roots of _
Eq. (3.8 are real, and at last two roots, sayandz,, are  For this systenh(x)=X1d’(x),
equal. Using the Vieta theorem, which expresses the coeffi- 4\ 2 4

. S X . X X
cients of a polynomial in terms of its roots, we can write the d(x)=A b2 o1y +2|, (313
relations 1+x4 1+x4

2,+2,+23=0, 2,2,23=1, (3.10  and the stationary probability distribution function is given

which show that in this case roats andz, are negative and
must be rejected. Finally, foQ<0 all roots are real and 4 dz
exp —q f >
0

different, and for the same reason as in the previous case,

rootsz, andz, must be rejected also. z 9 z ’
Thus, if r>r.,=—1/5v, then Eq.(3.6) has the unique 1+ 71
real rootx=0, and the stationary probability distribution Pi(x)=C > -
function x* x* !
Lo +2rv1+x4+1/2
X
2
ex —qfx 5 9 (3.19
0 z z . o )
— | +2rp 42 Since in this case Ed3.3) can be reduced to E¢3.6) with
1+z 1+z z=1+x* we conclude that the form of the probability dis-
Ps(x)=C 2 )2 2 1-x; tribution function(3.14) depends on the control parameter
X +ory X 42 qualitatively in the same way as in the previous case.
1+x2 1+x2 Namely, forr >r.,= —1/nv the functionP¢(x) is a unimo-
(3.1) P . : :
[C is the normalizing constant,=2(1—\,)/ 7] is unimodal 020 b J
with the global maximum located at the point O (see Fig.
1). Forr<r, (this condition can be fulfilled if the inequality 0.15 F J
[re;|<1 holds, Eqg.(3.6) has three rootg=0, x=%, andx
= —X, whereX=/z3—1. In this case, the point=0 corre- 0.10 | .
sponds to a local minimum of the functid?y(x), and the
pointsx=%X andx= —¥X to local maxima of equal height, i.e., 0.05 y
Psi(x) is bimodal (see Fig. 2 Therefore atr=r., a
unimodal-bimodal transition occurs. Note also that the dis- 000 = o0 25
tance X between the local maxima d?g(x) grows asr
decreases. In particular, if=r ., — e and e/|r.,|<1, thenX FIG. 2. Plot ofP¢(x) vs x for Eq.(3.11; r = — 0.9 and the other
=\envl(2+7n) andX=0 atr=r,. parameters have the same values as in Fig. 1.
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dal distribution, forr <r, it is a bimodal distribution, and at
r=r., a unimodal-bimodal transition occurs.

These transitions have the distinctive feature that the glo-

bal maximum ofP(x) is transformed into the local mini-
mum at the transition point=r,.

C. Third example

We consider a system with a linear restoring force and

with g41(x) given by Eq.(3.12. In this case, Eq¥3.1) and

(3.13 vyield

x2 dz

exp —q . 22 5

+2rv + 12
1+ 72 + 72
Ps(x)=C WERY: o =% '

+2rv + 12

1+x4 +x4
(3.195

and Eq.(3.3 is reduced to

X[(L+xM3+29(L+rv)x8+29rvx*]=0. (3.16

According to EqQ.(3.16), r., can be represented as,
=—1v"1¢o(7), whereg(#) is a positive function ofy. Nu-
merical analysis shows thatiif>r,, then Eq.(3.16) has the
unique real rook=0, andP(x) is unimodal as in Fig. 1. If
r<re, (this condition can hold ifr/|<1), then Eq.(3.16
has five roots; and three of themw 0, x=—%, andx=% (X
grows asr decreases correspond to the local maxima of
P.(X) (see Fig. 3 Thus, atr =r, a unimodal-trimodal tran-
sition occurs. Note that in this ca%e#0 atr=r,, in con-
trast to the previous examples.

PHYSICAL REVIEW E 68, 046132 (2003

Pst(x) T T T
0.3

0.1 b

0.0 L L 1
3.0 -15 0.0 1.5 X

FIG. 3. Plot of Pg(x) vs x for Eq. (3.19; r=—1 and =1,
v=2,A,=0.5 (r,,~—0.88).

IV. CONCLUSIONS

We have studied the role that the cross-correlation of
noises plays in the phenomenon of noise-induced transitions.
Starting from a Langevin equation with two multiplicative
cross-correlated white noises and adopting a general inter-
pretation of the noise terms, we have derived the correspond-
ing Fokker-Planck equation. For this purpose we have devel-
oped a simple approach, which is based on the two-stage
averaging of a state-dependent function. Analyzing the
Fokker-Planck equation, we have shown that the two-noise
Langevin equation can be reduced to a stochastically equiva-
lent one-noise Langevin equation.

Also, we have studied analytically and numerically the
influence of the cross-correlation of noises on the stationary
solution of the Fokker-Planck equation. For specific cases of
systems with linear and cubic restoring forces, we have
shown that changing the strength of the cross-correlation can
lead to a qualitative change of the stationary probability dis-
tribution function. Specifically, in such systems unimodal-
bimodal and unimodal-trimodal transitions can occur.
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