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Nonequilibrium transitions induced by the cross-correlation of white noises
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Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, USA
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We study the role that the cross-correlation of noises plays in the statistical behavior of systems driven by
two multiplicative Gaussian white noises. The temporal evolution of the system is described by a Langevin
equation, for which we adopt a general interpretation that includes the Ito as well as the Stratonovich inter-
pretation. We derive the stochastically equivalent Fokker-Planck equation by means of the two-stage averaging
of a state-dependent function. Analyzing the stationary solution of the Fokker-Planck equation for specific
examples, we show explicitly that the cross-correlation of white noises can induce nonequilibrium transitions.
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I. INTRODUCTION

A large variety of phenomena in physics, chemistry, bi
ogy, and other fields involve the interaction of a nonline
system with a fluctuating environment. The latter is oft
modeled as a source of external noise with known statist
characteristics. Most commonly, the external noise is con
ered to be Gaussian and white, since this provides a satis
tory idealization of real noise with a small correlation tim
for a very large number of applications@1#. White noise also
has the advantage that the evolution of the system is M
kovian @2#, which simplifies considerably the analytic
study of the statistical behavior of the system. In the wh
noise approximation, spatially homogeneous systems wi
single-state variablex(t) are often described by the Langev
equation

ẋ~ t !5F„x~ t !…1G„x~ t !…G~ t !, ~1.1!

where F(x) and G(x) are deterministic functions that ca
depend explicitly ont as well, andG(t) is Gaussian white
noise. We are interested in the case of multiplicative no
i.e., G(x) is not constant and the effect of the noise depe
on the state of the system. As is well known, in the case
multiplicative white noise, the Langevin equation~1.1! as
written is meaningless until an appropriate interpretation
the integral of the noise term has been adopted@1–3#. To do
so, we must specify the parameterl ~0<l<1! that deter-
mines the points of time at whichG„x(t)… is evaluated in the
corresponding integral sum. Only then can the Lange
equation be properly integrated to obtain sample paths
the stochastic evolution of the system, and a stochastic
equivalent Fokker-Planck equation can be associated
Eq. ~1.1!. Most commonly, the valuesl50 andl51/2, cor-
responding to the Ito@4# and Stratonovich@5# interpretation
of Eq. ~1.1!, respectively, are chosen. However, other choi
are possible, and Klimontovich@6#, for example, has dis
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cussed the choicel51, the so-called kinetic form of the
Langevin and Fokker-Planck equations. Equation~1.1! with
an appropriately chosen value forl represents a valuabl
tool for modeling a great variety of phenomena and p
cesses, including stochastic resonance@7#, noise-induced
transitions@1#, resonant activation@8#, and directed transpor
@9#, to name a few.

As was recently realized, some applications require t
the fluctuating environment of the system be modeled
two, or more, cross-correlated Gaussian white noises. U
ally, a multiplicative and an additive noise are consider
Studies of the single-mode laser@10#, of noise-induced trans
port of Brownian particles@11# and quantum particles@12#,
of the mean first passage time over a fluctuating poten
barrier @13#, of the activation rate@14#, of stochastic reso-
nance@15#, and of stochastic systems with colored corre
tion between white noise and colored noise@16# show that
the cross-correlation between those noises plays a signifi
role. In order to describe the fluctuation effects in syste
that are subjected to the action of two white noises,
present a model whose dimensionless statex(t) evolves ac-
cording to the Langevin equation

ẋ~ t !5 f „x~ t !…1(
i 51

2

gi„x~ t !…g i~ t !. ~1.2!

To capture the broadest variety of applications, we assu
that each Gaussian white noiseg i(t) is characterized by its
own parameterl i (0<l i<1). The noises have zero mea
and their correlation functions are defined as follows:

^g i~ t !g j~ t8!&52D i j d~ t2t8!. ~1.3!

Here ^•& denotes averaging with respect to the noisesg i(t),
D11[D1(>0) andD22[D2(>0) are the intensities of the
noisesg1(t) andg2(t), respectively,D125D21[rAD1D2, r
is the coefficient of correlation betweeng1(t) andg2(t), and
d(t) is the Diracd function.

In Ref. @17#, the authors study different nonlinear system
with two noises and show that the additive noise, correla
or uncorrelated with the multiplicative noise, can indu
©2003 The American Physical Society32-1
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nonequilibrium transitions. In this paper, we use Eq.~1.2! to
study the possibility of nonequilibrium transitions induc
by the cross-correlation of white noises. More precisely,
are interested in the situation when each noise separa
does not induce transitions, but together they do, due to t
cross-correlation. According to Ref.@1#, a noise-induced
transition occurs atr 5r cr , if the number of local maxima o
the stationary probability distribution functionPst(x) of x(t)
is different for r 5r cr20 and for r 5r cr10. To calculate
Pst(x), we need to obtain the Fokker-Planck equation for
time-dependent probability distribution function ofx(t). In
the particular case in which Eq.~1.2! is interpreted as a Stra
tonovich equation, the corresponding Fokker-Planck eq
tion was found earlier@18–20#, however by methods tha
cannot be directly extended to the general case of arbit
l i . To solve this problem, we develop another approa
based on the two-stage averaging of a state-dependent
tion. Within this framework, we derive the Fokker-Plan
equation for arbitraryl i and show that Eq.~1.2! can be re-
duced to a stochastically equivalent Langevin equation
form ~1.1!. We calculatePst(x) and study in detail the ex
tremal properties ofPst(t) for systems with a linear or cubi
restoring forcef (x) and additive noiseg2(t). Finally, we
show explicitly that such systems can exhibit nonequilibriu
transitions induced by the cross-correlation of the noises

The paper is organized as follows. In Sec. II, we der
the Fokker-Planck equation which corresponds to Eq.~1.2!,
and find an equation of form~1.1! that is equivalent to Eq
~1.2!. In Sec. III, we obtain the stationary distribution of th
solution of Eq.~1.2!, and consider three specific examples
Eq. ~1.2! that show that the cross-correlation of noises c
induce nonequilibrium transitions. We summarize our res
in Sec. IV.

II. THE FOKKER-PLANCK EQUATION

To obtain the Fokker-Planck equation, we consider
~1.2! to be the result of the mean-square limitt→0 of the
implicit difference scheme

dx5 f „x~ t !…t1(
i 51

2

gi„x~ t i !…dWi . ~2.1!

Here dx5x(t1t)2x(t), t i5t1l it, and dWi5Wi(t1t)
2Wi(t) are the increments of Wiener processesWi(t) satis-
fying the conditions

dWi50, dWidWj52D i j t. ~2.2!

The overbar denotes averaging with respect to the in
ments of Wiener processes. Note that the allowed valuesr
are restricted by the inequality ur u<1, because
(dW16dW2)252t(D11D262rAD1D2)>0.

SincedWi}t1/2 and the equalityx(t i)5x(t)1l idx is ac-
curate to first order indx, we obtain from Eq.~2.1! the
formula
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dx5 f „x~ t !…t1(
i 51

2

gi„x~ t !…dWi

1(
i 51

2

(
j 51

2

l igi8„x~ t !…gj„x~ t !…dWidWj , ~2.3!

which is accurate to first order int. ~Here and below, the
prime denotes the derivative with respect to the argumen
the function.! Next, we introduce a doubly differentiabl
function u(x) and calculate the differencedu5u„x(t1t)…
2u„x(t)…. Substituting Eq.~2.3! into the approximate for-
mula du5dxu8„x(t)…11/2„dx)2u9(x(t)…, we find with the
same accuracy as Eq.~2.3!

du5u8„x~ t !…f „x~ t !…t1u8„x~ t !…(
i 51

2

gi„x~ t !…dWi

1u8„x~ t !…(
i 51

2

(
j 51

2

l igi8~x~ t !!gj„x~ t !…dWidWj

1
1

2
u9„x~ t !…(

i 51

2

(
j 51

2

gi„x~ t !…gj„x~ t !…dWidWj .

~2.4!

The next step consists in averaging Eq.~2.4!. The result is
written as^du&5^•&, where the dot denotes the right-han
side of Eq.~2.4!. Let P(x,t) be the probability density tha
x(t)5x. Then

^u„x~ t !…&5^u~x!&P(x,t)[E
2`

`

dxu~x!P~x,t !, ~2.5!

and therefore

^du&5tE
2`

`

dx u~x!
]

]t
P~x,t !, ~2.6!

ast→0. Further, sincê•& can be represented in the form o
a two-stage averaging, i.e.,^•&5^ •̄&P(x,t) , Eqs. ~2.2! and
~2.4! yield

^•&5tK u8~x! f ~x!12u8~x!(
i 51

2

(
j 51

2

l iD i j gi8~x!gj~x!

1u9~x!(
i 51

2

(
j 51

2

D i j gi~x!gj~x!L
P(x,t)

. ~2.7!

Using the integral representation for mean values, integra
by parts, and assuming as usual natural boundary conditi
i.e., the flow of probability vanishes at infinity, we find

^•&5tE
2`

`

dxu~x!H 2
]

]x
@ f ~x!1h~x!#P~x,t !

1
]2

]x2
d~x!P~x,t !J , ~2.8!
2-2
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where

h~x!52(
i 51

2

(
j 51

2

l iD i j gi8~x!gj~x!, ~2.9!

d~x!5(
i 51

2

(
j 51

2

D i j gi~x!gj~x!. ~2.10!

Finally, comparing the right-hand sides of Eqs.~2.6! and
~2.8! and taking into account thatu(x) is an arbitrary func-
tion, we obtain the Fokker-Planck equation

]

]t
P~x,t !52

]

]x
@ f ~x!1h~x!#P~x,t !1

]2

]x2
d~x!P~x,t !,

~2.11!

which is stochastically equivalent to Eq.~1.2!. Using our
approach to calculate the conditional avera
^u„x(t)…&ux(t0)5x0

(t0<t), we confirm that the conditiona

probability densityP(x,tux0 ,t0) satisfies the same Fokke
Planck equation~2.11!. We emphasize that this equation
also valid in the general case when the functionsf (x) and
gi(x) depend explicitly ont.

Our results show that Eq.~1.2! defines a Markovian dif-
fusion process with a drift coefficient equal tof (x)1h(x)
and a diffusion coefficient equal to 2d(x). The eigenvalues

k1,25
D11D2

2
6

1

2
A~D12D2!214r 2D1D2 ~2.12!

of the matrix@D i j # are non-negative, which implies that E
~2.10! is a non-negative definite quadratic form, i.e.,d(x)
>0. The completely degenerate cased(x)[0 occurs if~1!
g1(x)5g2(x)[0; ~2! D15D250; ~3! D150, D2.0, and
g2(x)[0 @or D250, D1.0, and g1(x)[0]; ~4! r 521,
D15D2.0, andg1(x)5g2(x) @or r 51, D15D2.0, and
g1(x)52g2(x)]. Conditions ~1!–~3! represent the trivial
case in which noises do not affect the system, and condi
~4! means that the noises exactly cancel each other,
^@g1(t)6g2(t)#2&50 if r 571. In all other cases,d(x)Ó0.

The Fokker-Planck equation associated with Eq.~1.1!, in
which the noiseG(t) is characterized by the correlation fun
tion ^G(t)G(t8)&52Dd(t2t8) @here ^•& denotes averaging
with respect to the noiseG(t)] and by the parameterl, has
the form @21#

]

]t
P~x,t !52

]

]x
@F~x!1H~x!#P~x,t !1

]2

]x2
D~x!P~x,t !,

~2.13!

where H(x)52lDG8(x)G(x) and 2D(x)52DG2(x) are
the noise-induced drift and the diffusion coefficient, resp
tively. Comparing Eq.~2.11! with Eq. ~2.13!, we conclude
that Eq. ~1.1! is stochastically equivalent to Eq.~1.2! ~we
assume the same initial condition for both equations!, if

G~x!5Ad~x!/D, ~2.14!
04613
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F~x!5 f ~x!1h~x!2ld8~x!. ~2.15!

Note that for systems with one noise the relationH(x)
5lD8(x) always holds, i.e.,H(x)}D8(x). For systems
with two noises it is replaced by the more general relatio

h~x!5(
i 51

2

l igi8~x!
]d~x!

]gi~x!
. ~2.16!

Therefore,h(x)}d8(x) holds only for specific cases; for ex
ample, ifg1(x)5const, ifl15l2, or if g1(x)5g2(x).

III. ANALYSIS OF THE STATIONARY DISTRIBUTION

The stationary solution of the Fokker-Planck equati
~2.11! is given by

Pst~x!5
1

Zd~x!
expF E

g

x

dy
f ~y!1h~y!

d~y! G , ~3.1!

if the normalizing factor

Z5E
a

b

dx
1

d~x!
expF E

g

x

dy
f ~y!1h~y!

d~y! G ~3.2!

@x(t)P(a,b),a<g<b# exists. Assuming thatd(x).0, we
write the equationPst8 (x)50, which defines the location o
the extrema ofPst(x), in the form

f ~x!1h~x!2d8~x!50. ~3.3!

As mentioned in the Introduction, we seek transitions t
are induced by the cross-correlation of the noises. T
means that forr 50, Eq.~3.3! has the same number of roo
as equationf (x)50, and for r 5r cr that number changes
Next we demonstrate explicitly that such transitions inde
occur even in relatively simple systems withg2(x)51, i.e.,
when the noiseg2(t) is additive.

A. First example

As a first example, we consider a system with a line
restoring forcef (x)52ax (a.0) and

g1~x!5b
x2

11x2
~b.0!. ~3.4!

For this systema52` and b5`. According to Eqs.~2.9!
and ~2.10!, h(x)5l1d8(x),

d~x!5D1b2F S x2

11x2D 2

12rn
x2

11x2
1n2G , ~3.5!

and so Eq.~3.3! is reduced to

x@z31h~11rn!z2h#50, ~3.6!

wherez511x2 and
2-3
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h5
4~12l1!D1b2

a
, n5

1

b
AD2

D1
. ~3.7!

If r 50, thenz31hz2h>1, and Eq.~3.6!, just as equa-
tion f (x)50, has the unique real rootx50, which corre-
sponds to the maximum ofPst(x). This means that uncorre
lated noises do not change the unimodal character ofPst(x),
i.e., noise-induced transitions do not occur. They can occu
the cubic equation

z31h~11rn!z2h50 ~3.8!

has real roots which satisfy the conditionz.1. Simple
analysis shows that among the three rootszn (n51,3) of Eq.
~3.8! only one root, sayz3, satisfies that condition. Indeed, a
is well known~see, for example, Ref.@22#!, if the parameter

Q5
h2

4
1

h3~11rn!3

27
~3.9!

is positive, then Eq.~3.8! has two complex-conjugate roo
z1 and z2, and one real rootz3. It is not difficult to verify
thatz3.1, only if 11rhn,0. Further, atQ50 all roots of
Eq. ~3.8! are real, and at last two roots, sayz1 and z2, are
equal. Using the Vieta theorem, which expresses the co
cients of a polynomial in terms of its roots, we can write t
relations

z11z21z350, z1z2z35h, ~3.10!

which show that in this case rootsz1 andz2 are negative and
must be rejected. Finally, forQ,0 all roots are real and
different, and for the same reason as in the previous c
rootsz1 andz2 must be rejected also.

Thus, if r .r cr521/hn, then Eq.~3.6! has the unique
real root x50, and the stationary probability distributio
function

Pst~x!5C

expF 2qE
0

x2 dz

S z

11z
D 2

12rn
z

11z
1n2G

F S x2

11x2D 2

12rn
x2

11x2
1n2G 12l1

~3.11!

@C is the normalizing constant,q52(12l1)/h] is unimodal
with the global maximum located at the pointx50 ~see Fig.
1!. For r ,r cr ~this condition can be fulfilled if the inequality
ur cru,1 holds!, Eq. ~3.6! has three rootsx50, x5 x̃, andx
52 x̃, wherex̃5Az321. In this case, the pointx50 corre-
sponds to a local minimum of the functionPst(x), and the
pointsx5 x̃ andx52 x̃ to local maxima of equal height, i.e
Pst(x) is bimodal ~see Fig. 2!. Therefore atr 5r cr , a
unimodal-bimodal transition occurs. Note also that the d
tance 2x̃ between the local maxima ofPst(x) grows asr
decreases. In particular, ifr 5r cr2e and e/ur cru!1, thenx̃
5Aehn/(21h) and x̃50 at r 5r cr .
04613
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B. Second example

As another example consider a system with a cubic res
ing force f (x)522ax3 (a.0, the factor 2 is introduced fo
convenience! and

g1~x!5b
x4

11x4
~b.0!. ~3.12!

For this systemh(x)5l1d8(x),

d~x!5D1b2F S x4

11x4D 2

12rn
x4

11x4
1n2G , ~3.13!

and the stationary probability distribution function is give
by

Pst~x!5C

expF 2qE
0

x4 dz

S z

11z
D 2

12rn
z

11z
1n2G

F S x4

11x4D 2

12rn
x4

11x4
1n2G 12l1

.

~3.14!

Since in this case Eq.~3.3! can be reduced to Eq.~3.6! with
z511x4, we conclude that the form of the probability dis
tribution function~3.14! depends on the control parameterr
qualitatively in the same way as in the previous ca
Namely, forr .r cr521/hn the functionPst(x) is a unimo-

FIG. 1. Plot ofPst(x) vs x for Eq. ~3.11!; r 50 andh52, n52,
l150.5 (r cr520.25).

FIG. 2. Plot ofPst(x) vs x for Eq. ~3.11!; r 520.9 and the other
parameters have the same values as in Fig. 1.
2-4
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dal distribution, forr ,r cr it is a bimodal distribution, and a
r 5r cr a unimodal-bimodal transition occurs.

These transitions have the distinctive feature that the
bal maximum ofPst(x) is transformed into the local mini
mum at the transition pointr 5r cr .

C. Third example

We consider a system with a linear restoring force a
with g1(x) given by Eq.~3.12!. In this case, Eqs.~3.1! and
~3.13! yield

Pst~x!5C

expF 2qE
0

x2 dz

S z2

11z2D 2

12rn
z2

11z2
1n2G

F S x4

11x4D 2

12rn
x4

11x4
1n2G 12l1

,

~3.15!

and Eq.~3.3! is reduced to

x@~11x4!312h~11rn!x612hrnx2#50. ~3.16!

According to Eq.~3.16!, r cr can be represented asr cr
52n21w(h), wherew~h! is a positive function ofh. Nu-
merical analysis shows that ifr .r cr , then Eq.~3.16! has the
unique real rootx50, andPst(x) is unimodal as in Fig. 1. If
r ,r cr ~this condition can hold ifur cru,1), then Eq.~3.16!
has five roots; and three of them,x50, x52 x̃, andx5 x̃ ( x̃
grows asr decreases!, correspond to the local maxima o
Pst(x) ~see Fig. 3!. Thus, atr 5r cr a unimodal-trimodal tran-
sition occurs. Note that in this casex̃Þ0 at r 5r cr , in con-
trast to the previous examples.
04613
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IV. CONCLUSIONS

We have studied the role that the cross-correlation
noises plays in the phenomenon of noise-induced transiti
Starting from a Langevin equation with two multiplicativ
cross-correlated white noises and adopting a general in
pretation of the noise terms, we have derived the correspo
ing Fokker-Planck equation. For this purpose we have de
oped a simple approach, which is based on the two-st
averaging of a state-dependent function. Analyzing
Fokker-Planck equation, we have shown that the two-no
Langevin equation can be reduced to a stochastically equ
lent one-noise Langevin equation.

Also, we have studied analytically and numerically t
influence of the cross-correlation of noises on the station
solution of the Fokker-Planck equation. For specific case
systems with linear and cubic restoring forces, we ha
shown that changing the strength of the cross-correlation
lead to a qualitative change of the stationary probability d
tribution function. Specifically, in such systems unimod
bimodal and unimodal-trimodal transitions can occur.

FIG. 3. Plot of Pst(x) vs x for Eq. ~3.15!; r 521 and h51,
n52, l150.5 (r cr'20.88).
tt.

s,
@1# W. Horsthemke and R. Lefever,Noise-Induced Transitions
~Springer-Verlag, Berlin, 1984!.

@2# J. L. Doob,Stochastic Processes~Wiley, New York, 1953!.
@3# C. W. Gardiner,Handbook of Stochastic Methods, 2nd ed.

~Springer-Verlag, Berlin, 1990!.
@4# K. Ito, Nagoya Math. J.1, 35 ~1950!.
@5# R.L. Stratonovich, SIAM J. Control4, 362 ~1966!.
@6# Yu. L. Klimontovich,Statistical Theory of Open Systems~Klu-

wer Academic, Dordrecht, 1995!, Vol. 1.
@7# R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A14, L453

~1981!.
@8# C.R. Doering and J.C. Gadoua, Phys. Rev. Lett.69, 2318

~1992!.
@9# M.O. Magnasco, Phys. Rev. Lett.71, 1477~1993!.

@10# L. Cao and D.J. Wu, Phys. Lett. A260, 126 ~1999!; 283, 313
~2001!.

@11# L. Cao and D.J. Wu, Phys. Rev. E62, 7478~2000!; Phys. Lett.
A 291, 371 ~2001!; J.H. Li, J. iLuczka, and P. Ha¨nggi, Phys.
Rev. E64, 011113~2001!.
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